企业旺旺
    您所在的位置:总站首页 >企业旺旺 >浪涌-浪涌出货快

浪涌-浪涌出货快

  • 公司: 盾开电气(高明区分公司)
  • 价格:电联
  • 联系人:郑科
  • 更新时间:2025-05-29 15:21:29 ip归属地:佛山,天气:中雨转阵雨,温度:23-26 浏览次数:1
  • 所在地:高明
  • 标题:浪涌-浪涌出货快
  • 来源: dokin0000
浪涌-浪涌出货快
  • 浪涌-浪涌出货快
  • 浪涌-浪涌出货快
  • 浪涌-浪涌出货快
				 


以下是:浪涌-浪涌出货快的产品参数
产品参数
产品价格电议
发货期限电议
供货总量电议
运费说明电议
浪涌保护器1
低压1
浪涌-浪涌出货快,盾开电气(高明区分公司)为您提供浪涌-浪涌出货快产品案例,联系人:郑科,电话:13336912721、13336912721,QQ:1826753747,发货地:浙江省温州市乐清经济技术开发区。 广东省,佛山市,高明区 高明区,隶属广东省佛山市。位于广东省中部、珠三角西翼,是珠江、西江交汇的重要节点。高明区东南和南面与鹤山市交界,西南与新兴县相连,西北与肇庆市高要区接壤,东北隔西江与三水区、南海区相望。行政区域总面积938平方千米,下辖1个街道、3个镇,区政府驻荷城街道。2021年,高明区常住人口47.20万人,户籍总人口33.67万人。

想要了解浪涌-浪涌出货快产品的魅力?视频为你揭晓答案!

以下是:浪涌-浪涌出货快的图文介绍



                                              中国雷电灾害的现状
    雷电灾害是一种不可抗拒的自然性灾害,危害着人类的人身和财产。安迅电源防雷器主要通过地区分析、行业分析、时间分析、人身雷电灾害四个方面来讲解中国雷电灾害的现状。1998-2001年全国直接经济损失超过100万元的雷电灾害每年都在10次以上.其损失每年都大于5000万元。全国同期平均每年雷击死亡379人.受伤310人。
 

一、雷电灾害地区分析
    全国重大雷电灾害在空间上呈现明显的区域性分布特点.1998-2001年这四年间.全国56次重大雷电灾害的46.4%(约一半)发生在5个省,其中山东7次、广东6次、江西5次、河南4次、浙江4次,这5省重大雷电灾害的直接经济损失为8337万元,占全国的57.9%;其余的发生在贵州等17个地区,另外,新疆等9个省区没有重大雷电灾害的记录。图6.1给出了1998-2001年中国重大雷电灾害空间分布(各省用省会城市来表示).全国重大雷电灾害主要分布在东南地区和华北地区.形成一南一北的两个明显的雷灾中心区。雷灾在南方集中在浙江——江西——广东,呈带状分布。在北方集中在山东和河南,呈圆形分布。这两个雷灾中心区在地形上具有很好的代表性,北区以平原为主。南区以山地为主。在直接经济损失方面,北区的损失强度为235万元/次,比北区更严重的南区为383万元/次,其原因主要是南区发生了3次损失都在1000万元以上的重大
雷电灾害.其中1998年2月和6月江西两次棉麻储备库遭雷击引发火灾分别造成1800万元和1200万元的损失,2001年5月广东某厂房遇雷击并引发爆炸造成1000万元的损失并有人员伤亡。这3次雷电灾害都与仓储行业有关,和下面所做的雷灾行业分析的结果是吻合的.从整体来看,全国重大雷电灾害在东部比西部更严重,其原因主要是社会状况尤其是经济水平存在差异,经济相对发达的东部地区发生重大雷电灾害的可能性较大。西南地区的雷电灾害也比较严重,成为仅次于两大雷灾中心区的第三雷灾区。整个广大的西北地区是全国雷电灾害轻的地区。

          图6.1  1998-2001年中国重大雷电灾害空间分布图(单位:次)

二、雷电灾害行业分析
    1998-2001年全国重大雷电灾害56次分布在采矿、仓储、电力、纺织、旅游、农业、石化、通、冶金、医药等10个行业.其中雷灾严重的三大行业是通、电力和仓储,雷灾次数(指重大雷电灾害次数,下同)分别为15次、14次和9次,占全部的67. 9%。这三大行业的直接经济损失为10757.8万元,占全部的74.7%。图6.2给出了1998-2001年中国重大雷电灾害行业分布,实线代表雷灾直接经济扭失,虚线代表雷灾次数,行业损失和雷灾次数的相关系数为0.6965,存在一定的相关性。通和仓储行业具有代表性,通行业的重大雷电灾害发生频繁,而仓储行业的经济损失严重。通行业自身的特点以及伴随电子化的发展是导致雷电灾害日益频繁的根本原因,特别是雷电电磁脉冲(LEMP)的危害变得越来越严重,这也是雷电灾害的发展趋势之一。通行业的雷电灾害往往有一个明显的特点,就是其经济损失不仅存在严重的直接经济损失,而且伴有更严重的间接经济损失如服务中断和数据丢失等。而仓储行业的重大雷电灾害的发生有两个显著的特点:一是雷灾损失强度很大,即单次雷电灾害造成的经济损失很高,全国9次重大雷电灾害的直接经济损失高达5470万元,平均607. 8万元/次;二是雷灾的后续危害很严重,容易发生雷击火灾和雷击爆炸等,尤其是当雷电袭击存放棉麻、火药、粮食等易燃易爆物品的仓库或厂房时.对重大雷电灾害单次直接经济损失按行业进行比较,高的是仓储行业.其次为农业、采矿和石化行业,居中的是电力、医药和冶金行业,而通、纺织和旅游行业低。

         

                       图6.2  1998 -2001年中国重大雷电灾害行业分布图
                  (实线代表雷灾直接经济损失,单位:万元.坐标左轴;虚线代表雷灾
                  次数,单位:次,坐标右抽)

三、雷电灾害时间分析
    全国1998-2001年56次重大雷电灾害分布在各年分别为21次、17次、8次和10次,其中52次发生在4-8月的时间段内,占全部的92.9%. 4-8月的重大雷电灾害在很大程度上可以代表全年的同类灾害,这一点在下面的雷电灾害预测中将会得到应用。全部56次雷灾按月统计。8月多为18次,其次7月为14次,1、3、11、12月为0次。图6.3给出了1-12月的重大雷电灾害次数的季节指数,显著表明雷灾集中发生在4-8月,尤其是7月和8月。雷电灾害次数和直接经济损失之间的相关系数r为0.9284,具有良好
的相关性,因此,下面的雷电灾害分析与预测将以雷灾次数为主,其直接经济损失可以用雷灾次数乘以单次雷灾损失而得到.按月的距平百分率分析结果表明,重大雷电灾害每月平均发生1.167次。1998年的7月与8月和1999年的7月与8月是主要的正偏移月份,而每年的1,2,3月和9,10,11,12月几乎没有重大雷电灾害的发生,为主要的负偏移月份。雷灾的发生呈现周期性,集中在每年的4-8月,并且有逐渐递减的趋势,重大雷电灾害次数1998-2001年的48个月中平均每月递减0.027次.但由于年度数据太少,并不能得出确切的雷灾年际周期及年际趋势。

                  图6.3重大雷电灾害次数的季节指数

四、人身雷电灾害
    雷电灾害的危害不仅体现在经济损失方面,也多造成人身伤亡。1998-2001年雷击死亡人数每年分别为421,227,451和417人,四年共死亡1516人,平均每年379人;同期雷击受伤分别为192,194,372和483人,四年共受伤1241人.平均每年310人.其中严重的1998年8月发生在湖北的库雷灾,一次性造成197人死伤。造成人身伤亡的雷击多发生在海边、河边、树下、农村田间和山坡等易受雷击的地方。全国雷电典型灾害造成人身伤亡多的是广东省,其次为广西、贵州、福建、云南等4省区,这5个省区每年的雷击人身伤亡人数占全国的60%左右,其中广东约占全国的1/4。这类灾害主要发生在广大的农村,具有很大的不确定性.很难得到根本的防治.有效的防治方法就是加强雷电灾害的宜传和教育,提高人们的防雷意识,让人们主动避开易受雷击的时候和远离易受雷击的地方。
    对于雷电灾害,开展灾害预测是必要的,可以对未来雷电灾害的风险评估提供重要的指导.钟万强等人对中国的雷电灾害做过初步的预测,雷电灾害的预测主要根据雷灾与时间的关系,分别采用时间序列平滑法和季节变动预测法,预测结果表明,在2002-2005年期间全国将分别发生重大雷电灾害14,12,11,11次,四年合计47次,平均每年12次,每年将造成直接经济损失约3000万元,平均每年人身伤亡580人左右。




   1.内部防雷装置(internal lightning protection system):除外部防雷装置外,所有其他附加设施均为内部防雷装置,主要用于减小和防护雷电流在需防护空间内所产生的电磁效应。
    2.避雷器(surge arrester):通过分流冲击电流来限制出现在设备上的冲击电压、且能返回到初始性能的保护装置,该装置的功能具有可重复性。
    3.内部引下线(internal down-conductor):位于被防雷保护的建筑物内部的引下线.
    4.保护器(protector):防止设备或人身受到高压或强电流危害的装置.
    5.保护导体(protective conductor):提供目的(如防触电)的导体。
    6.保护电路(protective circuit):以保护为目的的一种辅助电路或部分控制电路。
    7.保护模式(mode of protection): SPD的保护器件可能按接在相线与相线、PE线与PE线、相线与中性线、中性线与PE线或者以上的组合等方式接入,这些接入方式被称为防护模式。
    8.过载故障模式(overetressed fault mode):模式1-在这种情况中,SPD的限压部分已断开。限压功能不再存在,但是线路仍可运行.模式2-在这种情况中.SPD的限压部分已被SPD内部的一个很小的阻抗短路。线路不可运行,但是设备仍被短路保护.模式3-在这种情况中.SPD的限压部分网络侧内部开路。线路不运行,但是设备仍然受到开路线的保护。
    9.浪涌保护器[surge protection device(SPD)]:用于限制暂态过电压和分流浪涌电流的装置.它至少应包含一个非线性电压限制元件.也称浪涌保护器.
    10.号浪涌保护器(signal surge protecting device):用于模拟号、数字号、控制号等息网络通道的防雷装置。
    11.保护电容器(capacitor for voltage protection):接于电源线与地之间,用以抑制浪涌电压的电容器。
    12.保护系统和装置(protection system and device):用于防止在有过电流(由于过负载引起),故障电流和接地故障电流的情况下.危及人、畜和损坏设备的系统和装置。
    13.电压开关型浪涌保护器(voltage switching type SPD):在无电涌时呈现高阻抗,当出现电压浪涌时其突变为极低的阻抗,通常采用放电间隙,气体放电管,晶闸管和三端双向可控硅元件作这类SPD的组件。有时称这类SPD为“短路开关型"SPD.
    14.多级浪涌保护器(multi-stage SPD):具有不只一个限压元件的SPD.这些限压元件可以是被一系列元件在电气上分离开,也可以不是。这些限压元件可以是开关型的,也可以是限压型的。
    15.限压型浪涌保护器(voltage-clamping-type SPD):这种浪涌保护器在无浪涌时呈现高阻抗,但随浪涌电流和电压的增加其阻抗会不断减小。用作这类非线性装置的常见器件有压敏电阻和钳位二极管.这类浪涌保护器有时也称为“钳位型”。
    16.组合型浪涌保护器(combination-type SPD):由电压开关型组件和限压型组件组合而成,可以显示为电压开关型或限压型或这两者都有的特性,这决定于所加电压的特性。
    17.一端口浪涌保护器(one-port SPD):与保护电路并联连接的电涌保护器,一个单端口浪涌保护器可以有单独的输入输出端口,但它们之间并无专门的串联阻抗.
    18.二端口浪涌保护器(two-port SPD):具有独立的输入输出端口的电涌保护器。在这些端口之间插入有一个专门的串联阻抗.
    19.雷电保护系统[lightning protection system(LPS)]:用以对某一空间进行雷电效应防护的整套装置,它由外部防雷装置和内部防雷装置两部分组成.在特定情况下,雷电保护系统可以仅由外部防雷装置或内部防雷装置组成,也称防雷装置。
    20.非线性金属氧化物电阻片(压敏电阻) (nonlinear metal oxide varistor) :避雷器的主要工作部件.由于其具有非线性伏安特性,在暂态电压作用时呈低电阻,从而限制避雷器端子间的电压,而在正常运行时呈现高电阻。
    21·过电流保护(over-current protection):电源装置和所连接的设备为防护过大的输出电流(包括短路电流)而施加的一种保护。
    22.过电流保护器(over-current protector) :与保护对象串联,用来防止其过电流的一种保护器。
    23.额定电流(rated current):一个限流SPD在不引起限流元件动作特性产生变化的持续流过的大电流。
    24.额定负载电流(rated load current):可以供给接到SPD输出端负载的大连续额定均方根或直流电流。
    25.标称放电电流(nominal discharge cL rrent) :8/20ms冲击电流波流过SPD的电流峰值。用于对SPD做II级分类试验,也用于对SPD做I级和II级分类试验的预试验。
    26.不可恢复的限流(non-resettable current limiting): SPD的只能限流一次的功能。
    27.可恢复限流(resettable current limiting):SPD在动作后可人为复原的限流功能。
    28.残流(residual current):SPD按制造厂家的说明连接,不带负载,施加大持续工作电压时流过保护接线端子的电流。
    29.交流耐受能力(a. c. durability):表征SPD容许通过规定幅值的交流电流.并耐受规定次数的特性。
    30.连续工作电流(continuous operating current):SPD每一种防护方式在大连续工作电压作用下分别流过的电流,相当于流过SPD防护器件的电流和流过SPD中与防护器件并联的所有内部电路的电流之和。
    31.电流恢复时间(current reset time):一个自恢复限流器恢复到正常和静止状态所需要的时间。
    32.电流响应时间(current response time):在特定的电流和特定的温度下限流元件动作所要求的时间。
    33·限流(current limiting):至少包含有一个非线性限流元件的SPD降低所有超过预定电流值的一种功能。
    34.大放电电流(maximal discharge current):允许通过SPD的电流峰值,该电流具有根据Ⅱ类工作状态试验的测试程序所规定的波形(8/20ms)及幅值。
    35·限流电压(current-limiting voltage):加在规定输出端之间,输出电流开始被限制时的电压值。
    36.续流(ollow current):当SPD通过放电电流脉冲后,随后而至的由电源系统提供的电流,与连续工作电流完全不同.
    37.自恢复限流(self-resettable current limiting):在干扰电流消失后,SPD能自动恢复限流的功能。
    38.冲击耐受能力((impulse durability):表征SPD容许通过规定的波形和峰值的冲击电流,并耐受规定次数的特性。
    39.过电压保护(over-voltage protection):电源装置和所连接的设备为防止电源故障以至于产生过高的输出电压(包括开路电压)而施加的一种保护。
    40.残压(residual voltage) :在放电电流通过时,在SPD端子间呈现的电压峰值。
    41.限压(voltage limiting): SPD降低所有超过预定电压值的一种功能。
    42.持续工作电压(continuous operating voltage):连续施加在SPD端子间不会引起SPD传输特性衰变的直流或交流(有效值)电压.
    43.电压保护水平(voltage protection level):表征一个SPD限制其两端电压的特性参数.这个电压数值不小于浪涌电压限制的大实测值,是由生产商确定的。
    44.实测限制电压(measured limiting voltage):在规定波形和幅值作用下在SPD端子间测量到的电压大值。
    45.大持续运行电压(maximum continuous operating voltage):可连续施加在SPD端子上,且不致引起SPD传输性能降低的大电压(直流或均方根值)。
    46.大中断电压(maximum interrupting voltage):可施加在SPD限流元件上,且不致引起SPD传输性能降低的大电压(直流或有效值)。这个电压可等于SPD的大持续运行电压.或根据SPD内部限流元件的配置可高于SPD的大持续运行电压。
    47.双端口浪涌保护器负载侧冲击耐受能力(load-side surge withstand ca-pability for a two-port SPD):双端口SPD输出端耐受来自负载侧冲击的能力.
    48.插入损耗(insertion loss):由于在传输系统中插入一个SPD所引起的损耗.它是在SPD插入前后面的系统部分的功率与SPD插入后传递到同一部分的功率之比。这个插入损耗通常用分贝表示。
    49.绝缘电阻(insulation resistance):SPD指定的端子之间施加大持续运行电压时呈现的电限。
    50.劣化((degradation):SPD由于浪涌或不利环境引起的原始性能参数的变坏。
    51.盲点(blind spot):高于大持续运行电压,但可引起SPD不完全动作的工作点。所谓SPD的不完全动作是指一个多级SPD在冲击试验时不是所有各级都能动作。这可造成SPD中的一些元件遭受过载。
    52.热崩质(thermal runaway): SPD持续的热损耗超过了外壳及连线的散热能力,导致内部元件温度逐步增加直至损坏,这样一种状态又称为热失控.
    53.热稳定(thermal stability):在工作状态测试引起温度升高,在特定环境温度和大连续工作电压作用下,SPD温度随着时间而下降至稳定温度,这样称SPD是热稳定的。



佛山高明温州盾开电气有限公司常年生产销售各种材质与规格的 电涌保护器,信号隔离器, 电涌保护器,信号隔离器生产厂家,可定做各种型号 电涌保护器,信号隔离器,,欢迎来人来电洽谈业务。




浪涌-浪涌出货快

  一、架空输电线路雷电过电压概述
    架空输电线路地处旷野,绵延数千千米,很容易遭受雷击.雷击是造成线路跳闸的主要原因.同时,雷击线路形成的雷电过电压波.沿线路传播侵人变电所.也是危害变电所设备运行的重要因素。
    根据过电压形成的物理过程,雷电过电压可以分为两种。一是直击雷过电压。它是雷电直接击中杆塔、避雷线或导线(见图2. 1中①、②或③)引起的线路过电压。二是感应雷过电压。它是在雷击线路附近大地,由于电磁感应在导线上产生的过电压。运行经验表明.直击雷过电压对电力系统的危害大,感应雷过电压只对35 kV及其以下的线路有威胁。  图2.1 雷击输电线路部位示意图


按照雷击线路部位的不同,直击雷过电压又分为两种情况.一种是雷击线路杆塔或避雷线时,雷电流通过雷击点阻抗使该点对地电位大大升高.当雷击点与导线之间的电位差超过线路绝缘的冲击放电电压时,会对导线发生闪络,使导线出现过电压。因为这时杆塔或避雷线的电位(值)反而高于导线。故通常称为反击。另一种是雷电直接击中导线(无避雷线时)或绕过避雷线(屏蔽失效)击中导线.直接在导线上引起过电压。后者通常称为绕击。
    雷击线路可能导致两种破坏性后果。一是使线路发生短路接地故障。雷电过电压的作用时间虽然很短(数十秒),但导线对地(避雷线或杆塔)发生闪络以后,工频电压将沿此闪络通道继续放电,进而发展成为工频电弧接地。此时继电保护装置将会动作,使断路器跳闸,影响线路正常送电。二是形成沿输电线路侵人变电站的雷电波,在变电站内产生复杂的折反射过程,可能使电力设备承受很高的过电压,以致设备绝缘破坏.造成停电事故。
    输电线路防雷性能的优劣,工程上主要用耐雷水平和雷击跳闸率这两个指标来衡盆。耐雷水平是指线路遭受雷击时所能耐受的不致引起绝缘闪络的大雷电流幅值(单位为kA).耐雷水平越高,线路的防雷性能越好.雷击跳闸率是指在折算至年雷电日数为40的标准条件下.每百千米线路每年因雷击引起的线路跳闸次数.单位为:次/百千米·年。需击跳闸率是衡量线路防雷性能的综合性指标。

二、感应过电压
    在雷云对地放电过程中.放电通道周围的空间电磁场将发生急剧变化。因而当雷击输电线附近的地面时,虽未直击导线。由于雷电过程引起周围电磁场的突变,也会在导线上感应出一个高电压来.这就是感应过电压。感应过电压包含静电感应和电磁感应两个分量,一般以静电感应分量为主。
    虽然对于感应过电压形成的物理解释已经有了一个比较一致的认识,但由于难以得到雷电放电过程的原始数据等原因,感应过电压有多种不同的计算方法,而且结果还差别较大。
   由于感应过电压对各相导线来说基本相同,所以不会发生相间闪络。又由于感应过电压是因电磁感应而产生的,其极性与雷云电荷.即与雷电流的极性正相反,因而绝大部分感应过电压是正极性的,这一点与直击雷过电压不同。另外,感应过电压的波形较直击雷过电压更平缓,波头由几秒至几十秒,波尾则可达数百秒。避雷线由于对导线有屏蔽作用.因而能降低导线上的感应过电压幅值。避雷线与导线间的藕合系数越大,导线上的感应过电压就越低。


三、雷击导线过电压
    无避雷线的线路,当雷闪放电过分靠近线路时,发生的就不是雷击地面的感应过电压,而是雷电直击导线的过电压。在我国110 kV及其以上线路一般都架
有避雷线.以免导线直接遭受雷击,但由于各种偶然因素的影响.仍有可能发生避雷线屏蔽失效.雷电绕过避雷线而击中导线的情况,通常称绕击.
    绕击发生的概率虽然很低,但一旦雷电击中导线,导致线路跳闸的几率将很高。

四、雷击塔顶过电压
    雷击塔顶(包括雷击塔顶附近的避雷线)时,杆塔电感与接地电阻的存在将使塔顶电位瞬时升高,其电位位甚至大大超过导线电位,引起绝缘子串闪络,即反击,造成线路跳闸,同时在线路上形成向线路两侧传播的过电压波.过电压波侵人发电厂、变电站。
  除上述二种雷电过电压外,还有一种雷击避雷线挡距中央时的过电压.国内外大量的运行经验表明,此时引起挡距中央避需线与导线空气问隙发生闪络是非常罕见的,故对这种雷电过电压此处不再分析。
    应当指出,上面的感应过电压、雷击导线过电压、雷击塔顶过电压的计算公式都没有考虑绝缘子串的运行电压,亦即导线的运行电压.对220 kV及其以下的线路来说,运行电压所占比重不大,一般可以忽略。但在超高压线路中,随着电压等级的提高,工作电压不应再被忽略,有人建议至少应按照导线运行相电压峰值的一半来考虑,且电压极性与雷电流极性相反。因为任何时刻都至少有一相导线运行在与雷电流相反的极性下。如果按照统计法计算,则雷击时的导线工作电压瞬时值及其极性应作为一个随机变来考虑。但这些还都没有列入电力行业的相关规程中。


五、雷击跳闸率
    当雷闪放电造成线路产生雷电过电压时,若雷电流超过相应情况下的耐雷水平,则导致线路绝缘发生闪络。但雷电过电压的持续时间极短,只有几十秒、高压开关还来不及跳闸.只有当冲击闪络后的闪络通道发展成稳定的工频电弧时才会导致线路跳闸。这些过程都有随机性。因此工程中除耐雷水平外.还采用雷击跳闸率作为一个综合指标,来衡量线路防雷性能的优劣。我国电力行业标准DL/T 620 1997给出了一般上壤电阻率地区有避雷线线路的耐雷水平和雷击跳闸率数值.见表2.

表2 架空输电线路典型杆塔的耐雷水平及雷击跳闸率



点击查看盾开电气(高明区分公司)的【产品相册库】以及我们的【产品视频库】


浪涌-浪涌出货快_盾开电气(高明区分公司),固定电话:13336912721,移动电话:13336912721,联系人:郑科,QQ:1826753747,浙江省温州市乐清经济技术开发区 发货到 广东省 佛山市 禅城区、南海区、顺德区、三水区、高明区。
联系我们 CONTACT US
  • 联系人:郑科
  • 手机:13336912721
  • QQ:1826753747
  • 企业: 盾开电气(高明区分公司)
  • 主营:电涌保护器、信号隔离器
  • 地址:浙江省温州市乐清经济技术开发区 发货到高明
您可能对高明本地以下产品新闻也感兴趣
企业旺旺qy55.com) 版权所有 苏ICP备13011592号-27
qy55.com All Rights Reserved   苏公网安备 32130202080769号
发布时间:2023-05-20 02:10:08 技术支持:qy55.com

首页

交谈

拨打电话